Exercise 58

(a) If $g(x)=x^{2 / 3}$, show that $g^{\prime}(0)$ does not exist.
(b) If $a \neq 0$, find $g^{\prime}(a)$.
(c) Show that $y=x^{2 / 3}$ has a vertical tangent line at $(0,0)$.
(d) Illustrate part (c) by graphing $y=x^{2 / 3}$.

Solution

Use Equation 2.7.5 to find $g^{\prime}(a)$, assuming $a \neq 0$.

$$
\begin{aligned}
g^{\prime}(a)=\lim _{x \rightarrow a} \frac{g(x)-g(a)}{x-a} & =\lim _{x \rightarrow a} \frac{x^{2 / 3}-a^{2 / 3}}{x-a} \\
& =\lim _{x \rightarrow a} \frac{\left(x^{1 / 3}\right)^{2}-\left(a^{1 / 3}\right)^{2}}{x-a} \\
& =\lim _{x \rightarrow a} \frac{\left(x^{1 / 3}+a^{1 / 3}\right)\left(x^{1 / 3}-a^{1 / 3}\right)}{x-a} \\
& =\lim _{x \rightarrow a} \frac{\left(x^{1 / 3}+a^{1 / 3}\right)\left(x^{1 / 3}-a^{1 / 3}\right)}{\left(x^{1 / 3}-a^{1 / 3}\right)\left(x^{2 / 3}+a^{1 / 3} x^{1 / 3}+a^{2 / 3}\right)} \\
& =\lim _{x \rightarrow a} \frac{x^{1 / 3}+a^{1 / 3}}{x^{2 / 3}+a^{1 / 3} x^{1 / 3}+a^{2 / 3}} \\
& =\frac{a^{1 / 3}+a^{1 / 3}}{a^{2 / 3}+a^{1 / 3} a^{1 / 3}+a^{2 / 3}} \\
& =\frac{2 a^{1 / 3}}{3 a^{2 / 3}} \\
& =\frac{2}{3} a^{-1 / 3}
\end{aligned}
$$

$g^{\prime}(0)$ does not exist because

$$
\begin{aligned}
g^{\prime}(0) & =\lim _{x \rightarrow 0} \frac{g(x)-g(0)}{x-0} \\
& =\lim _{x \rightarrow 0} \frac{x^{2 / 3}-0^{2 / 3}}{x} \\
& =\lim _{x \rightarrow 0} \frac{x^{2 / 3}}{x} \\
& =\lim _{x \rightarrow 0} \frac{1}{x^{1 / 3}} \\
& = \pm \infty
\end{aligned}
$$

this limit does not exist. Note that $g^{\prime}(0)$ represents the slope of $g(x)$ at $x=0$. Since $g^{\prime}(0)= \pm \infty$, there is a vertical tangent at $x=0$.

Below is a graph of $g(x)=x^{2 / 3}$ to illustrate the vertical tangent at $x=0$.

